RIGOTRIO at SemEval-2017 Task 9: Combining Machine Learning and Grammar Engineering for AMR Parsing and Generation
نویسندگان
چکیده
By addressing both text-to-AMR parsing and AMR-to-text generation, SemEval2017 Task 9 established AMR as a powerful semantic interlingua. We strengthen the interlingual aspect of AMR by applying the multilingual Grammatical Framework (GF) for AMR-to-text generation. Our current rule-based GF approach completely covered only 12.3% of the test AMRs, therefore we combined it with state-of-the-art JAMR Generator to see if the combination increases or decreases the overall performance. The combined system achieved the automatic BLEU score of 18.82 and the human Trueskill score of 107.2, to be compared to the plain JAMR Generator results. As for AMR parsing, we added NER extensions to our SemEval-2016 general-domain AMR parser to handle the biomedical genre, rich in organic compound names, achieving Smatch F1=54.0%.
منابع مشابه
Sheffield at SemEval-2017 Task 9: Transition-based language generation from AMR
This paper describes the submission by the University of Sheffield to the SemEval 2017 Abstract Meaning Representation Parsing and Generation task (SemEval 2017 Task 9, Subtask 2). We cast language generation from AMR as a sequence of actions (e.g., insert/remove/rename edges and nodes) that progressively transform the AMR graph into a dependency parse tree. This transition-based approach relie...
متن کاملUofR at SemEval-2016 Task 8: Learning Synchronous Hyperedge Replacement Grammar for AMR Parsing
In this paper, we apply a synchronous-graphgrammar-based approach to SemEval-2016 Task 8, Meaning Representation Parsing. In particular, we learn Synchronous Hyperedge Replacement Grammar (SHRG) rules from aligned pairs of sentences and AMR graphs. Then we use Earley algorithm with cubepruning for AMR parsing given new sentences and the learned SHRG. Experiments on the evaluation dataset demons...
متن کاملSemEval-2017 Task 9: Abstract Meaning Representation Parsing and Generation
In this report we summarize the results of the 2017 AMR SemEval shared task. The task consisted of two separate yet related subtasks. In the parsing subtask, participants were asked to produce Abstract Meaning Representation (AMR) (Banarescu et al., 2013) graphs for a set of English sentences in the biomedical domain. In the generation subtask, participants were asked to generate English senten...
متن کاملThe Meaning Factory at SemEval-2017 Task 9: Producing AMRs with Neural Semantic Parsing
We evaluate a semantic parser based on a character-based sequence-to-sequence model in the context of the SemEval2017 shared task on semantic parsing for AMRs. With data augmentation, super characters, and POS-tagging we gain major improvements in performance compared to a baseline character-level model. Although we improve on previous character-based neural semantic parsing models, the overall...
متن کاملCLIP$@$UMD at SemEval-2016 Task 8: Parser for Abstract Meaning Representation using Learning to Search
In this paper we describe our approach to the Abstract Meaning Representation (AMR) parsing shared task as part of SemEval 2016. We develop a novel technique to parse English sentences into AMR using Learning to Search. We decompose the AMR parsing task into three subtasks that of predicting the concepts, the relations, and the root. Each of these subtasks are treated as a sequence of predictio...
متن کامل